Search results for "rotationally symmetric space"

showing 2 items of 2 documents

A Remark on an Overdetermined Problem in Riemannian Geometry

2016

Let (M, g) be a Riemannian manifold with a distinguished point O and assume that the geodesic distance d from O is an isoparametric function. Let \(\varOmega \subset M\) be a bounded domain, with \(O \in \varOmega \), and consider the problem \(\varDelta _p u = -1\ \mathrm{in}\ \varOmega \) with \(u=0\ \mathrm{on}\ \partial \varOmega \), where \(\varDelta _p\) is the p-Laplacian of g. We prove that if the normal derivative \(\partial _{\nu }u\) of u along the boundary of \(\varOmega \) is a function of d satisfying suitable conditions, then \(\varOmega \) must be a geodesic ball. In particular, our result applies to open balls of \(\mathbb {R}^n\) equipped with a rotationally symmetric metr…

PhysicsIsoparametric functionComparison principleGeodesic010102 general mathematicsRotationally symmetric spacesRiemannian manifoldRiemannian geometry01 natural sciencesRotationally symmetric spaceCombinatoricsOverdetermined systemsymbols.namesakeBounded function0103 physical sciencessymbolsComparison principle; Isoparametric functions; Overdetermined PDE; Riemannian Geometry; Rotationally symmetric spaces; Mathematics (all)Isoparametric functionsMathematics (all)Overdetermined PDEMathematics::Differential Geometry010307 mathematical physics0101 mathematicsRiemannian Geometry
researchProduct

A rigidity problem on the round sphere

2015

We consider a class of overdetermined problems in rotationally symmetric spaces, which reduce to the classical Serrin's overdetermined problem in the case of the Euclidean space. We prove some general integral identities for rotationally symmetric spaces which imply a rigidity result in the case of the round sphere.

Mathematics - Differential GeometryPure mathematicsEuclidean spaceApplied MathematicsGeneral Mathematics010102 general mathematicsMathematics::Analysis of PDEsComputer Science::Numerical Analysis01 natural sciencesOverdetermined systemrotationally symmetric spaceMathematics - Analysis of PDEsRigidity (electromagnetism)rigidityDifferential Geometry (math.DG)Settore MAT/05 - Analisi Matematica0103 physical sciencesRound sphereFOS: MathematicsPrimary 35R01 35N25 Secondary: 53C24 58J05Overdetermined PDE010307 mathematical physics0101 mathematicsAnalysis of PDEs (math.AP)Mathematics
researchProduct